Easy Way to Remember Path of Filtrate Through Nephron
Edmund is a biostatistician with over 10 years of experience in clinical research. He loves to study human-inherited traits.
Why Is the Urinary System Important?
As long as you are alive, your body will constantly metabolize organic molecules and produce waste products. If you are unable to get rid of metabolic waste products, they will accumulate to toxic levels and poison your body. The urinary system is very important because it performs the essential function of getting rid of these metabolic wastes.
Main Structures of the Urinary System
The main structures that comprise the urinary system are two kidneys (containing nephrons), two ureters, one bladder, one urethra, arteries and veins.
The ureter connects the kidney to the bladder. The bladder is storage for urine. Urine is excreted to the outside of the body through the urethra.
Kidney
The kidneys are two bean-shaped organs located outside the peritoneum at the posterior of the upper abdomen. The kidneys are located on each side of the vertebral column and protected by the ribs and a layer of fat. The renal artery, renal vein and ureter connect to the kidney at the indented media border called the hilus.
Besides urine formation, the kidney has the following functions:
- Plays a major role in regulating blood volume because it controls the amount of water to be excreted and the amount of water to be reabsorbed.
- Regulates electrolytes in the blood by controlling the secretion and reabsorption of sodium and potassium ions.
- Regulates the pH of the blood by controlling the secretion and reabsorption of hydrogen ions. When more hydrogen ions are excreted from the blood, it renders the blood less acidic (more alkaline). But if more hydrogen ions are retained in the blood, this renders the blood more acidic (less alkaline).
- Regulates blood pressure by regulating the amount of water excreted and the amount of water reabsorbed back into the blood. When the kidneys excrete less water and reabsorb more water, the blood volume will increase. An increased blood volume will lead to an increase in blood pressure. On the other hand, if the kidneys excrete more water and reabsorb less water, the blood volume will reduce. This will lead to reduced blood pressure.
- Plays a role in the regulation of red blood cell production. When the number of red blood cells decreases, the level of oxygen in the blood will also decrease. This causes the kidney to secrete a substance called erythropoietin. Erythropoietin travels to the bone marrow and causes it to produce more red blood cells. When enough red blood cells have been produced, this process is shut down via a negative feedback mechanism.
The Nephron
Structure of the Nephron
There are more than a million nephrons packed in the renal cortex of the kidney. The nephron is made up of the glomerulus and a system of tubes.
The glomerulus is a network of intertwined capillaries mass. It is enclosed in a cup-shaped structure called the bowman's capsule. The space between the bowman's capsule and the glomerulus is called the bowman's space. Fluid is filtered from the capillaries, and the filtrate is collected into the bowman's space through the glomerular filtration membrane.
The fluid that is filtered is known as filtrate. The glomerular filtration membrane allows only small elements to pass through. The filtrate then moves through the system of tubes where elements are added (secretion from the blood) or removed (reabsorption back into the blood).
From the glomerulus, the filtrate passes through 4 segments of the nephron:
- Proximal convoluted tubule: reabsorption of nutrients and substances that the body needs
- Loop of henle: a thin-lobed structure that controls the concentration of the urine
- Distal convoluted tubule: regulates sodium, potassium and pH
- Collecting duct: regulates water and sodium reabsorption.
How the Nephron Works in Urine Formation
The nephron is the functional unit of the kidney. It does the job of the urinary system. The primary function of the nephron is to remove waste products from the body before they build up to toxic levels.
Scroll to Continue
Read More From Owlcation
The nephron does its job of getting rid of metabolic wastes through filtration and secretion. Useful substances are reabsorbed back into the blood.
Filtration
Blood enters the glomerulus via the afferent arteriole (branches from the renal artery), and leaves via the efferent arteriole. The efferent arteriole is narrower than the afferent arteriole, which helps build up hydrostatic pressure. The blood flow in the glomerulus creates hydrostatic pressure, which forces molecules through the glomerular filtration membrane. This process is called filtration.
Secretion and Reabsorption
Capillary beds surround the loop of henle, the proximal and distal convoluted tubules. As the filtrate flows through the nephron, elements of the blood get added to or removed from the nephron. Generally, more elements get added into the nephron to be excreted than they get out of the nephron.
The movement of elements from the nephron back into the blood is known as reabsorption, while the movement of elements from the blood into the nephron is known as secretion.
1. Proximal convoluted tubule | 2. Loop of Henle | 3. Distal convoluted tubule | 4. Collecting duct | |
---|---|---|---|---|
Reabsorption | Glucose, Amino acids, Sodium Chloride, Calcium ion, Potassium ion, Bicarbonate ion, water | Water, Sodium chloride, Calcium ion | Water, Sodium chloride, Calcium ion, Bicarbonate ion, Hydrogen ion | Water, Sodium chloride, Calcium |
Secretion | Uric acid, Hydrogen ion, Drugs | Potassium ion, Hydrogen ion |
Normal filtrate contains of water, glucose, amino acids, urea, creatinine, and solutes such as sodium chloride, calcium, potassium and bicarbonate ions. Toxins and drugs may also be present.
Proteins or red blood cells are not present in the filtrate because they are too large to pass through the glomerular filtration membrane. If these large molecules are present in the filtrate, it is an indication of a problem in the filtration process.
1. Proximal Convoluted Tubule
Tubular Reabsorption
Potassium ion, sodium chloride, calcium ion, amino acids, glucose, bicarbonate ion and water are reabsorbed back into the blood stream. Any filtered amino acids and glucose are also reabsorbed back into the blood stream.
Tubular Secretion
Hydrogen ions, uric acid and drugs are secreted from the blood into the proximal convoluted tubule. Uric acid and drugs are not filtered. They are excreted by secretion into the system of tubes at the proximal convoluted tubule.
2. Loop of Henle
Reabsorption
The descending limb of the loop of henle is highly permeable to water. Water is reabsorbed here by osmosis. The ascending limb is not water permeable but reabsorbs sodium chloride and calcium ion.
Filtrate at the loop of henle has a high concentration of metabolic waste products such as urea, uric acid and creatinine. By the time the filtrate reaches the loop of henle, all the nutrients and substances that the body needs would have already been reabsorbed.
3. Distal Convoluted Tubule
Reabsorption
Sodium chloride, calcium, bicarbonate ions, hydrogen ions and water are reabsorbed from the distal convoluted tubule into the blood stream.
Secretion
Hydrogen and potassium ions are secreted from the blood into the distal convoluted tubule.
The nephron controls water by movement of sodium chloride in and out of the filtrate and the water will follow sodium depending on the osmotic gradient. Water will move from where there is a lesser concentration of sodium chloride to where there is a higher concentration of sodium chloride.
4. Collecting Duct
Reabsorption
Sodium chloride, calcium and water are reabsorbed from the collecting duct back into the blood stream.
Excretion
Components of urine are water, sodium chloride, calcium, potassium, bicarbonate, creatinine and urea. Creatinine is neither reabsorbed from nor secreted into nephron after filtration. For this reason, creatinine is used as a marker for glomerular filtration. A high blood creatinine level will indicate a problem in glomerular filtration in the nephron.
Main components of the glomerular filtrate | Main components in urine |
---|---|
Water, Glucose*, Amino acids*, Sodium chloride, Calcium, Potassium, Bicarbonate, Creatinine, urea | Water, Sodium chloride, Potassium, Bicarbonate, Creatinine**, Urea, Calcium# |
Regulation of Water Reabsorption
There are two main hormones that regulate the rate of excretion of water.
The first hormone is aldosterone which acts on the collecting duct and causes the body to retain more water. Blood pressure increases when the body retains more water. This system is triggered when there is low blood pressure or low sodium ion concentration in the blood. Aldosterone is part of the renin-angiotensin aldosterone system (RAAS).
The second hormone is antidiuretic hormone (ADH) which causes increase water reabsorption at the collecting duct by increasing the water permeability of the collecting ducts. Water then moves back into the blood by osmosis. More ADH is secreted when the body needs to retain more water and this will lead to a concentrated urine.
Sources
- Anatomy and Function of the Urinary System, URMC, Medical Center
- Renal Handling of Calcium. Am J Nephrol
This content is accurate and true to the best of the author's knowledge and is not meant to substitute for formal and individualized advice from a qualified professional.
Elizabeth S. on April 09, 2020:
So helpful. Thank you
molly smith on December 05, 2019:
this helps alot
mnqobiey mthiyane on November 25, 2019:
thank you
Bryan Collins on July 12, 2019:
Nice & easy 2 understand be blessed.
aqsa memon on May 31, 2019:
this is so nice presentation I get a lot of knowledge and knowledge acquired experience and understand to some thing and these notes give help for easy to understand about urinary system..
Rachel Jones on May 23, 2019:
This was awesome , I can understand this so much better than my professor's version.
Audrey N. M on May 13, 2019:
awesome and fantastic presentation..thanks
vaibhav rayak on April 29, 2019:
Thank you
Bishnupriya on March 22, 2019:
It's an amazing note which helps me a lot for my xm...Thank you....
Adrey on March 04, 2019:
Soooooo helpful thank you so much
Laura Schultz on February 26, 2019:
Awesome article! Great overview, thank you
Nicodemas yusuph on February 22, 2019:
Good explanation
Patrick KUsimbwa on February 14, 2019:
Well explained
deborah kunda on January 16, 2019:
Thank you so much
Dr lokhande on December 15, 2018:
Nice post
Nyanga Renson on December 05, 2018:
Thanks very much
Jovie on November 15, 2018:
Really useful
Yosief on November 01, 2018:
nice work, easy to understand.
dee on November 01, 2018:
helpful
Lorry on March 18, 2018:
Love how the info was presented. Thank you :)
kain on February 27, 2018:
nice work,,easy to understand
Bedan Nyaga on January 02, 2018:
Good work, enjoyable to read and easy to understand,, thanks
brian osikuku on December 04, 2017:
it is so great information.Thanks for this wonderful information
Sriparna on November 26, 2017:
very nice information
Kwemboi Collins on November 03, 2017:
It's so helpful thanks a lot it's making us pass
dylan on October 02, 2017:
lol thanks yall this helped me get an A
Immy on October 01, 2017:
Thanks for the good work
chinwendu on July 15, 2017:
Thanks a lot for reminding me of my biology teacher.
nouman kalhoro on June 03, 2017:
nice urine formation
RHEACORONEL on July 29, 2015:
#MY FAVORITE SUBJECT IS SCIENCE :)
Jouddy Espiritu on July 04, 2015:
i like science.thanks very very helpful
sandra on October 31, 2014:
Very easy to understand...GOOD JOB!
mystery on July 30, 2014:
Science is vry helpful
neshnia on January 13, 2014:
i am so glade that you stop to give a comment
Edmund Custers (author) on July 31, 2013:
Purnasrinivas, thanks for stopping by and leaving a comment.
purnasrinivas from Bangalore on July 31, 2013:
Nice hub equivalent to biology class
Source: https://owlcation.com/stem/The-Urinary-System-How-the-Nephron-Works-in-Urine-Formation
0 Response to "Easy Way to Remember Path of Filtrate Through Nephron"
Postar um comentário